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BACKGROUND: Modern societies are exposed to vast numbers of potentially hazardous chemicals. Despite demonstrated linkages between chemical
exposure and severe health effects, there are limited, often conflicting, data on how adverse health effects of exposure differ across individuals.

OBJECTIVES: We tested the hypothesis that population variability in response to certain chemicals could elucidate a role for gene–environment inter-
actions (GxE) in differential susceptibility.
METHODS: High-throughput screening (HTS) data on thousands of chemicals in genetically heterogeneous zebrafish were leveraged to identify a can-
didate chemical (Abamectin) with response patterns indicative of population susceptibility differences. We tested the prediction by generating
genome-wide sequence data for 276 individual zebrafish displaying susceptible (Affected) vs. resistant (Unaffected) phenotypes following identical
chemical exposure.
RESULTS: We found GxE associated with differential susceptibility in the sox7 promoter region and then confirmed gene expression differences
between phenotypic response classes.
CONCLUSIONS: The results for Abamectin in zebrafish demonstrate that GxE associated with naturally occurring, population genetic variation play a
significant role in mediating individual response to chemical exposure. https://doi.org/10.1289/EHP2662

Introduction
Little is known about why the effects of environmental agents,
including industrial chemicals, manufacturing by-products, metals,
pesticides, and herbicides differ between individuals within and
across populations (Abdo et al. 2015; National Academies of
Sciences, Engineering, and Medicine et al. 2016; Blaser et al.
2013). There is strong evidence that gene–environment interactions
(GxE) play an important role in health outcomes, and that these
interactions are likely a major source of the heterogeneity in chemi-
cal response. It is well established that GxE are an important com-
ponent of the etiology of complex traits and diseases (Hunter 2005).
Pharmacogenomic studies have consistently demonstrated that dif-
ferential susceptibility to chemical exposure is directly related to
genetic variation (Johnson 2003; Motsinger-Reif et al. 2013). Thus,
for any genetically diverse population, latent genetic variation may
contribute to observed differential susceptibility when challenged by
chemical exposure. While it is accepted that such GxE interactions
are important, there remain significant challenges—both experimen-
tal and statistical—in detecting and characterizing such interactions
(Rappaport and Smith 2010; Zeise et al. 2013).

The zebrafish (Danio rerio), with over 26,000 protein-coding
genes consisting of orthologues for over 70% of human genes, has
gained momentum as a model organism in vertebrate genomics

(Howe et al. 2013; Lieschke and Currie 2007). Toxicological and
pharmacological applications in chemical biology have also seized
upon the many benefits of zebrafish, including the short generation
time, well-characterized development, and early maturation as
clear embryos (Kimmel et al. 1995). Various morphological end
points are easy to observe, and effects of multiple chemical expo-
sures on these outcomes have been broadly studied (Asharani et al.
2011; Bai et al. 2010; Truong et al. 2014; Usenko et al. 2007).
These advantages have led to an upward trend in high-throughput
zebrafish chemical screens, especially toward screens of many
chemicals in many fish, primarily in 96-well plates (Rennekamp
and Peterson 2015). Thus, there exists potential for large-scale
studies of chemical bioactivity that integrate genetic information to
probe mechanisms underlying morphologic response to chemical
exposures during development (Baer et al. 2014) or even across
multiple generations (Knecht et al. 2017; Kovács et al. 2015).

Zebrafish populations differ from many model organisms in
that the standard husbandry practices can be designed to maintain
diversity (Nasiadka and Clark 2012), meaning that most laboratory
populations contain an unknown level of genetic diversity (Brown
et al. 2012). While this diversity is attractive in translating to ques-
tions of human and ecological health, it raises critical questions of
how unmeasured interindividual genetic variationmight contribute
to susceptibility differences in response to chemical exposure.
Uncharacterized genetic diversity can manifest as apparent error
effects within and across laboratories (Rennekamp and Peterson
2015).

Comparisons between named strains and interlab populations of
zebrafish have shown variability in several phenotypes, providing
the rationale that constitutive genetic variationmay contribute to the
variability in exposure response (Lange et al. 2013). Unfortunately,
partitioning this variability among genetic, environmental, and phe-
notypic factors is hindered by (non)systematic differences in experi-
mentation, statistical analysis, and most importantly, by a lack of
available genetic data for the strains evaluated. Despite the small
samples (one to two individual fish) or pooled strategies used in
studies aiming to characterize genetic diversity, results have shown
between 5 and 15 million single-nucleotide polymorphisms (SNPs)
segregating in a zebrafish population, with roughly half of the var-
iants showing evidence of population specificity (Butler et al. 2015;
LaFave et al. 2014; Obholzer et al. 2012; Patowary et al. 2013).
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To address these limitations, we directly interrogated GxE inter-
actions by individually sequencing entire genomes from a large
sample of zebrafish using refined experimental and statistical meth-
ods for characterizing phenotypic responses to chemical exposure
(Garcia et al. 2016; Truong et al. 2016; Zhang et al. 2016, 2017).
The analytical methods were developed using years of data from
high-throughput studies HTS of diverse chemicals in the Tanguay
Laboratory’s (Oregon State University, Corvallis, OR) Tropical 5D
Zebrafish line (T5D). The T5D line is an outbred population of here-
tofore unknown genetic heterogeneity that has been used to screen
thousands of chemicals for adverse biological responses (Reif et al.
2016; Truong et al. 2014). We leveraged these HTS data to identify
a chemical (Abamectin) that elicited biological response patterns in-
dicative of population genetic differences, and then generated
genome-wide sequence data to compare individuals displaying dif-
ferential susceptibility to chemical exposure. To our knowledge,
this is the first genome-wide association study (GWAS) using indi-
vidually sequenced zebrafish drawn from a diverse population. Our
approach inverts the paradigm of typical GxE research, where
rather than interrogating the same list of usual chemical suspects,
we only ask questions of particular compounds that have strong
evidentiary support for differential population susceptibility.

Methods

Overview of Experimental Approach
First, we exploited the large-scale design of a high-throughput
screening (HTS) system that has tested thousands of chemicals in an
outbred zebrafish population of unknown genetic heterogeneity to
select Abamectin as a chemical that displayed phenotypic patterns
of high variability between individual responses. Second, we char-
acterized the correlation structure across morphological end points
in order to describe a specific multivariate Affected vs. Unaffected
phenotype in zebrafish exposed to Abamectin. Third, we performed
range-finding studies to narrow our estimate of the Abamectin criti-
cal concentration to that at which a stable 50:50 Affected:Unaffected
proportion was observed. Fourth, samples were exposed to the criti-
cal concentration of Abamectin, from which we isolated DNA from
Affected samples that displayed our multivariate phenotype and
Unaffected samples that did not respond to chemical exposure. Fifth,
whole-genome sequences were generated from DNA individually
isolated from eachAffected andUnaffected sample. These datawere
then used to identify GxE as genetic variants associated with differ-
ential response to chemical exposure.

Experimental Population and Developmental Screening
System
Adult T5D (wildtype) zebrafish were housed at Sinnhuber Aquatic
Research Laboratory at Oregon State University. All experiments
in this manuscript used this population, which originated from a
minimum of 25 small group crosses, each group containing three
males and three females. Each generation was propagated using
equal proportions of offspring from the original group crosses.
Adult zebrafish were group spawned to produce embryos for the
developmental screening system detailed in Truong et al. (2014).
In this system, embryos were dechorionated (Truong et al. 2011)
and placed into individual wells of a 96-well plate. Chemical expo-
sures were initiated at 6 hpf and evaluated at 120 hpf (hours post
fertilization) for 17 morbidity and mortality end points. The end
points evaluated were MORT: mortality at 120 hpf, YSE: yolk sac
edema, AXIS: bent body axis, EYE: eye, SNOU: snout, JAW: jaw,
OTIC: otic, PE: pericardial edema, BRAI: brain, SOMI: somite,
PFIN: pectoral fin, CFIN: caudal fin, CIRC: circulation, PIG: pig-
mentation, TRUN: trunk length, SWIM: swim bladder, and NC:

notochord distortion. Each end point was recorded as present or
absent for each individual embryo. These binary vectors of 17mor-
phological end points per individual were used for subsequent
analysis.

Identifying Chemicals with Evidence of Differential
Population Response
Screening data on 1,060 chemicals from Truong et al. (2014) were
evaluated to prioritize chemicals for GWAS mapping. Our aim
was to identify the chemical with maximal evidence of differential
response for optimal GxE power. Chemical choice was based on
morphological data from a large-scale, concentration–response
study of chemically exposed zebrafish embryos assessed for devel-
opmental toxicity end points at 120 hpf. In searching for patterns
indicative of population variability over a broad, multipoint con-
centration series, our prioritization metric highlighted maximal
population variability in response across all binary morphological
end points to identical environmental exposures. The full concen-
tration–response data for 1,060 chemicals (n=32 samples tested
across each of five chemical concentrations) were analyzed. We
first produced a sublist of chemicals that had at least one morpho-
logical end point (other than mortality) observed at near 50% inci-
dence (32–68%) at a minimum of two concentrations. This
measure ensured that there was developmental variability between
fish exposed to that chemical (i.e., high proportions of both
Affected and Unaffected individuals), that a stable critical concen-
tration could be estimated, and that the response variability held for
more than one concentration. Given our goal of maximizing inter-
individual response variability, the latter principle ensured a less
steep concentration–response curve and a higher probability that
reproducible patterns of differential population response to expo-
sure would be observed in subsequent trials.

Generating Data at a Critical Exposure Concentration to
Elicit Maximal Population Variability
Two rounds of range-finding experiments were performed to esti-
mate a critical concentration of test chemical (Abamectin, CASRN
71751-41-2, Sigma-Aldrich) that induced 50% incidence of effect
so that the genetic association study could draw evenly from
Affected and Unaffected individuals. For each round, adult zebra-
fish were group spawned to produce embryos that were exposed to
several concentrations of Abamectin, following the developmental
screening protocol detailed above. First, 576 individual zebrafish
embryos were distributed into six 96-well plates, with 12 individu-
als per plate exposed to a concentration (0, 0.03, 0.1, 0.3, 1, 3, 5, or
10 lM) using a 20-mM stock of Abamectin digitally dispensed
using an HP D300e (Hewlitt Packard HP D300e). Second, a nar-
rower range including 0, 0.5, 0.7, and 0:9 lM was performed using
192 individuals (48 per concentration). From these data, thefinal criti-
cal concentration of 0:6 lMwas selected to approximate a 50% effect
size while ensuring sufficient numbers of completely clean (i.e., ab-
sence of adverse developmental end points) Unaffected samples.

After the concentration was established, individual zebrafish
were exposed to the critical concentration of 0:6 lMof Abamectin
to identify individuals responding differently to equivalent envi-
ronmental concentrations. We also included untreated (negative)
controls on each plate (Exposed: control ratio at 72:24 per plate) to
ensure that we could detect global plate effects and have confirma-
tory samples to sequence if unexpected genotype distributions had
been encountered. The total number of samples exposed was 768
(8 plates with 96 individuals), including 576 Exposed:192 Control.
From the exposed embryos and knowledge of end point–end point
relationships and developmental cascades (Zhang et al. 2016,
2017), we identified samples of maximum phenotypic clarity (i.e.,
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no intermediates) to define a cleanmultivariate phenotype of individ-
uals Affected by exposure vs. individuals Unaffected by the same
Abamectin exposure. For Affected status, an individual had to dis-
play all of the following specific end points: altered eye, snout, jaw,
and axis development, plus pericardial and yolk sac edema (EYE,
SNOU, JAW, AXIS, PE, and YSE). The Unaffected phenotypic sta-
tus was applied to individual embryos having absence of any mor-
phological defect (i.e., normally developed embryos). A total of 276
(138 Affected, 138 Unaffected) zebrafish exposed at the critical con-
centration were randomly selected to be sequenced for genome-wide
association mapping. While other individuals may have been classi-
fiable into one of our two extreme, Affected/Unaffected classes, we
optimized sequencing resources towards fully penetrant phenotypes
in order tomaximize discriminatory power.

Genotyping by Sequencing
Genomic DNAwas extracted from individual larvae (Quick-DNA™
96-Kit, Cat # D3011; Zymo Research), with a subset selected for
sequencing. For each sample, 350 ng of DNA was used for library
preparation. Prior to library prep, the quality and quantitywas verified
using a fluorometric plate reader and bioanalyzer. Samples were
sheared to ∼ 320 base pair ðbpÞ, and 100 ng of each sample was used
in the WaferGen DNA amplification library prep kit (Takara Bio,
USA). After the library prep, each sample was quantified to verify
similar input for sequencing. The samples were sequenced on an
HiSeq3000 (Illumina) with 12 samples per lane (∼ five times cover-
age) and 150-bp paired-end sequencing. All library preparation and
sequencing was performed at Oregon State University’s Center for
Genome Research and Biocomputing (http://cgrb.oregonstate.edu/
core).

Quality Control and Alignment
FastQC (BabrahamBioinformatics version 0.11.3) tests for sequence
quality, Guanine Cytosine (GC) content, sequence length distribu-
tion, sequence duplication levels, overrepresented sequences, adap-
tor content, and kmer content were used to ensure fidelity of results.
For each sample (DNA from an individual zebrafish), reads were
aligned to the Genome Reference ConsortiumGRCz10 (Howe et al.
2013) reference genome with Bowtie2 (version 2.1.0; open source)
(Langmead and Salzberg 2012), using standard settings. Potential
PCR duplicates were then removed using Samtools rmdup (Li et al.
2009).

Variant Calling and Filtering
Variant calls were generated for each individual at every variant
site. A variant call was made at any site (across the entire genome,
including all chromosomes and mitochondrial DNA, excluding
nonchromosomal material or scaffolds not aligned within a chro-
mosome) where there was sufficient evidence of a nonreference
base for at least one individual. GATK version 3.5 (McKenna et al.
2010) HaplotypeCaller was used to call genotypes on all samples
simultaneously (joint genotyping). This leverages data across sam-
ples to assign genotypes for individuals with low coverage at cer-
tain bases using a Bayesian likelihood model for genotyping.
Reads with a mapping quality (MQ) below 20 were not
included, and a minimum phred-scaled confidence threshold of
10 was required. Genotypes are reported for every individual at
every variant site for which there remained reads.

The GATK VariantFiltration tool was used to implement the
GATK Best Practices (DePristo et al. 2011) hard filtering recom-
mendations (filter SNPs with quality by depth <2; phred-scaled
Fisher’s exact test p-value >60; root mean score MQ <35; MQ
Mann-Whitney rank sum <− 12:5; read position Mann-Whitney
rank sum <− 8; strand odds ratio >3). The MQ threshold of 35

was adjusted fromGATK’s recommendation of 40. This is due to the
GATK workflow’s use of a different aligner, which outputs a larger
range of MQ scores for each base, averaging 60 for high confidence
reads. ThemaximumMQoutputted from the Bowtie2 aligner is only
42 (for a perfectly aligned readwith nomismatches to the reference).
A final filtering refinement and file conversion for subsequent analy-
sis was performed using VCFtools [VCFtools version 0.1.14
(Danecek et al. 2011)]. SNPs with mean depth (across samples)
below 2 were excluded. This was done to reduce false-positive calls
for SNPs that were based on too few reads per individual.

Association Analysis
An allelic association analysis (Fisher’s exact tests) was run for each
SNP across the genome using PLINK 1.9 (Purcell et al. 2007). For
each SNP, the counts of theminor andmajor alleles in the cases (mor-
phologically Affected individuals) and controls (morphologically
Unaffected individuals) were used to calculate the exact hypergeo-
metric probability of observing those four counts under the null hy-
pothesis that allele counts in cases and control do not differ. A p-value
below a=0:05 provides sufficient evidence that the allele counts for
each group do statistically differ. To adjust for multiple testing, a
Bonferroni correction was used, leading to a significant call for any
SNPwith a p-value<2:55× 10−9 (0.05/19,597,672).

Validation
For validation of candidate SNPs identified in our GWAS, gene
expression was measured following Abamectin exposure on a
new set of individuals that were randomly sampled from the pop-
ulation. The developmental screening protocol was identical to
that described earlier. At 120 hpf, 84 individuals (balanced between
control, Affected, and Unaffected) were randomly selected for real-
time polymerase chain reaction (RT-PCR) gene expression analysis.
Embryos from wells of interest (Affected and Unaffected) were in-
dependently snap frozen using liquid nitrogen and then copurified
for RNA andDNAusing ZR-Duet™MiniPrep (Cat #D7001; Zymo
Research). A list of the forward and reverse primers (targeting a
SNP just upstream of sox7, which had the smallest GWAS p-value)
used for the experiment can be found in Table S1 (Integrated DNA
Technologies). ThemRNAgene expression analysiswas performed
as described inChlebowski et al. (2017).

Expression of target gene sox7 and housekeeping gene beta
actin were measured as threshold cycle (CT ) value using relative
standard curves to optimize how much input was in the reaction.
Prior to analysis of RT-PCR results, one control individual was dis-
carded for an abnormally high CT value (CT >32; for other sam-
ples, 27<CT <30), and six individuals (two Affected; four
Unaffected) were discarded due to insufficient amplification signal.
A two-sample t-test was first conducted to ensure that beta actin
was not differentially expressed in control individuals compared to
exposed (Affected and Unaffected) individuals (p=0:58). The sta-
tistical analysis of sox7 expression was then based on the log2 fold
change calculated for each individual using theDDCT method:

DCTðiÞ= sox7CTðiÞ− beta actin CTðiÞ

DDCT ið Þ=DCT ið Þ−
Xc

j=1

DCT jð Þ
c

Fold ChangeðiÞ=2−DDCT ðiÞ

Individual i is one of the total number of control, Affected,
and Unaffected individuals, and c is the number of control indi-
viduals. The fold change for each individual is with respect to the
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average control. A two-sample t-test was then conducted compar-
ing log2 (fold change) for Affected vs. Unaffected individuals.

Results

Response Patterns Indicative of Differential Susceptibility
We exploited the HTS data from Truong et al. (2014) to identify
chemicals with empirical evidence of population susceptibility dif-
ferences, as illustrated in Figure 1A. Out of 1,060 chemicals
screened in full concentration–response by Truong et al. 2014,
there were 19 that met our population variability heuristic (Table
S2). From this empirical shortlist, Abamectin had themost robustly
variable response (i.e., highest proportion of responders) across the

most concentrations. Given the broad concentration spacing
(log10) of the HTS design, certain individuals (Unaffected) tolerated
concentrations of Abamectin that were orders of magnitude higher
than concentrations causing severe abnormalities in other individuals
(Affected).

Rangefinder Experiments to Pinpoint a Critical
Concentration
Figure 1B illustrates the progression of rangefinder experiments
aimed at identifying the critical concentration for morphologi-
cal effects induced by Abamectin. Power estimates showed that
in the absence of prior knowledge of allele frequencies or popu-
lation genetic structure, the optimal study design should include

Figure 1. Study Design. (A) Chemical selection from HTS data: Example concentration–response curves from 1,060 chemicals interrogated for adverse morphologi-
cal end points. Each panel represents a test chemical where the proportion of individuals displaying adverse morphological development (vertical axis) is plotted
against the tested concentrations (horizontal axis). The curve with the asterisk in the upper left-hand corner of the panel represents a chemical response suggestive of
differential population susceptibility, whereas all other curves depict steeper toxic points of departure (i.e., less spread in the range of concentrations eliciting effects
across the population) or lack of response. (B) Rangefinders: Successive screens to find the critical concentration as that at which approximately 50% incidence is
observed. The heatmaps show horizontal blocks (separated by whitespace) of identical concentrations, whose height corresponds to the number of zebrafish tested.
Within each concentration block, each row is the vector of observed morphological end points (17 columns; see “Methods” section) for an individual. As per the
legend at the lower right, blue represents no end point incidence, red represents incidence of an end point, and grey cross-hatching represents mortality. (C) Critical
concentration exposure: Example of a single exposure plate, where 72 individuals (in single wells) were exposed to 0:6 lM Abamectin at 6 hpf, plus 24 individuals
exposed to vehicle [dimethylsulfoxide (DMSO)] controls. Developmental morphology screening was performed at 120 hpf to identify Affected individuals with the
phenotype of altered eye (EYE), snout (SNOU), jaw (JAW), pericardial edema (PE), yolk sac edema (YSE), and axis development (AXIS) vs. Unaffected individuals
with no observed defects. (D) Individual DNA extraction: Individuals classified as Affected and Unaffected were randomly selected for whole-genome sequencing.
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a balanced phenotypic ratio of Affected:Unaffected samples.
Therefore, rangefinders aimed to find the concentration eliciting
an even ratio of our complete phenotype. The first round nar-
rowed the variable–response concentrations of the original HTS
data to a range between 100 ng. The second round tightened the
target range between 0:03–10 lM. From these data, 0:6 lMwas
chosen as the critical concentration as intermediate between the
high incidence at 0:7 lMand the low incidence at 0:5 lM.

Identifying Individuals for Genomic Sequencing
Of the 576 fish exposed to Abamectin at the critical concentra-
tion, we observed 3% mortality at the 120 hpf evaluation. Of the
surviving exposed fish, 155 (28%) displayed the fully penetrant
Affected phenotype (see Figure 1C, image of Affected individual
with arrows pointing to specific end points), 200 fish (36%) were
Unaffected, and the remainder of surviving individuals were
scored as having an intermediate phenotype that consisted of a
subset of the full Affected end point set. This is evidence of popu-
lation variability in response to chemical exposure. From the fish
at the two phenotypic extremes, 276 individuals were randomly
chosen for full-genome sequencing (138 Affected and 138
Unaffected). By first focusing on a clean Affected group of fish
that scored exactly the same on the morphologic measures, we
reduced potential variability coming from sources other than
genetics and thereby increased the power to detect association. In
unexposed control individuals, only 1% showed any specific mor-
phological deformity (none of whom showed the specific pheno-
type of interest), vs. 65% of exposed individuals (p<10−16).

Genetic Polymorphisms Associated with Gene-by-
Environment
FastQC output indicated that reads were 151 bp in length. The
overall alignment rate was 89% for each sample. GC content for
each sample was approximately 37%, which is consistent with
the zebrafish genome (Han and Zhao 2008). All individual sam-
ples passed QC and were retained. Before base quality control/
filtration, there were 44,150,378 variant sites (36,532,474 SNPs)
with an average of 4.2 times coverage per site. After applying fil-
tering cutoffs, 19,973,683 SNPs remained. The final VCFtools fil-
ter left 19,597,672 SNPs for association analysis.

Association analysis was conducted for each SNP across the
genome using Fisher’s exact test in PLINK 1.9 (Purcell et al. 2007)
to assess allele counts in the Affected vs. Unaffected individuals.
To adjust for multiple testing, we subjected our nominal p-value
(a=0:05) to a Bonferroni correction of (0.05/19,597,672), yield-
ing a genome-wide significance threshold of p<2:55× 10−9. The
strict statistical significance criteria highlighted three SNPs that
exceeded the genome-wide significance thresholds (Figure 2 and
Table S3). The SNPs (ranked in order of ascending p-value) were
mapped to genic regions of sox7, erf, and cfap74.

Validation
From the genome-wide data, a G ! T variant in the promoter
region (569 bp upstream) of sox7 (the top hit in Figure 2) was sig-
nificantly associated with severe developmental end points after
exposure. This SNP had the smallest p-value and was observed at
high prevalence in the population tested, highlighting a promising

Figure 2. Genome-wide association study (GWAS) results for Abamectin. The Manhattan plot shows the genomic coordinate for each SNP on the horizontal
axis (grouped into chromosomes) vs. its association with phenotypic status on the vertical axis (as the negative logarithm of p-value). The horizontal line indi-
cates the Bonferroni-adjusted significance threshold. The dots above this line indicate candidate SNPs (cfap on chromosome 8, erf on chromosome 19, sox7 on
chromosome 20) for validation as genetic factors associated with differential susceptibility (i.e., Affected vs. Unaffected phenotypes) to Abamectin exposure.
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target for functional validation. The SNP region upstream of sox7
and expression primer design for the validation study are high-
lighted in Figure 3A and Table S1. The lower portion of Figure 3A
shows the T allele frequency differences at this SNP between
Affected (45%) andUnaffected (12%) individuals. In the validation
study, using a new sample of individuals from the population, sox7
showed significantly lower expression (p=0:02; Figure 3B) at 120
hpf for Affected (n=26) vs. Unaffected individuals (n=24) after
exposure to 0:6 lMAbamectin.

Discussion
Our evidence fromAbamectin-exposed zebrafish showed that interin-
dividual (i.e., population) genetic variation contributes to differential
response to environmental chemical exposures. To reach this conclu-
sion, we first exploited the large-scale, systematic design of HTS data
(Truong et al. 2014) to select a target chemical (Abamectin) whose
exposure produced patterns of differential response in the exposed
population. Next, we generated genome-wide sequence data for indi-
vidual zebrafish displaying susceptible vs. resistant phenotypes fol-
lowing identical chemical exposure. Finally, we identified a genetic
region near sox7 associated with this GxE effect and confirmed gene
expression differences between susceptibility groups.

This approach addresses a critical need in the face of an expanding
chemical exposome (Wild 2005). Select individuals or entire com-
munities may be especially susceptible to adverse health effects from
chemical exposure through common consumer products, occupa-
tional hazards, environmental emergencies, or geographic location,
such as Superfund sites (Tilley et al. 2017; Brette et al. 2014; Judson
et al. 2010).Models for diverse populations are needed to explore this
interindividual susceptibility (French et al. 2015). The T5D zebrafish
line used in our experiments presents such a genetically heterogene-
ous population, containing levels of interindividual diversity required
for studies of differential susceptibility (Balik-Meisner et al. 2018).

In contrast to the pooled samples commonly used for these
types of experiments in zebrafish (Butler et al. 2015;Obholzer et al.
2012), we followed individuals (in single-fish wells) from immedi-
ately postfertilization throughout the entire environmental expo-
sure course, all phenotypic assessments, and generation of genetic

information. Analysis of individual-level differences in behavioral
and morphological responses to chemicals provided solid pheno-
typic anchors for genetic results. Indeed, our results demonstrated
reproducible population variability in a multivariate phenotype
that showed consistent concentration–response to chemical treat-
ment across successive rounds of narrowing concentration. The
fine-scale quantification of phenotype and exposure environment
enabled us to elucidate the role that genetic variation can play in
differential susceptibility. This specificity, where we can identify
individual-level genetic variation that affects response to individ-
ual chemical environments, may bring new precision to personal-
ized toxicity prediction and risk assessment.

Importantly, the authors note that the test compound, Abamectin,
is not a genotoxic compound that would have been expected to alter
DNA sequence (Oliveira et al. 2016). Abamectin is a standard com-
pound formulation of avermectin B1a and B1b and member of the
structurally complex mectin class of compounds. It is used to control
insects in agriculture by acting through glutamate-gated chloride
channels [Gamma-aminobutyric acid (GABA) receptor] and as an
anthelmintic agent to treat common intestinal worms (Campbell
1989). Abamectin has evidence of population variability in response
to pharmaceutical applications (Aljedani and Almehmadi 2016;
Churcher et al. 2009; Khaldoun-Oularbi et al. 2013; Slimko et al.
2002).

A novel SNP upstream of sox7 was associated with GxE at a
genome-wide significance level. There is strong evidence that this
gene, a transcription factor, plays a critical role in development
related to our Affected phenotype. Ablation of Sox7 in mice leads
to developmental delays, pericardial edema, and yolk sac defects
(Wat et al. 2012). In zebrafish, sox7 mutants have arterial block
and pericardial edema after 72 hpf (Hermkens et al. 2015). Our
functional validation experiments showed statistically significant
suppression of sox7 gene expression in Affected individuals vs.
those Unaffected following chemical exposure. Although these
expression differences were observed in a new, unbiased sample of
individuals, there are likely more factors at play in diverting
exposed individuals from normal development toward a severely
abnormal phenotype. Additional experiments will be needed that
probe key time points along the coordinated cascade of vertebrate

Figure 3. Functional Validation of sox7. (A) Depiction of the sox7 transcript, gene expression primer locations, and frequency sequence logos for the region
surrounding the significant SNP (20:19,166,444) in Affected and Unaffected individuals from the genome-wide association study (GWAS). Sequence logos are
centered at the SNP site, denoted as position 0. The relative letter height corresponds to the frequency of the base at that position. (B) Notched boxplots show-
ing the distribution of log2 (fold change) of sox7 expression for Control (unexposed), Unaffected (exposed), and Affected (exposed) groups. The boxplots show
the median (thick horizontal lines), the upper and lower quartiles (top and bottom of boxes, respectively), 1.5 times the interquartile range (whiskers), and any
outlier samples outside the whisker range of the observed expression for each group.

Environmental Health Perspectives 067010-6 126(6) June 2018



developmental events (Zhang et al. 2017). We present the current
results as a step toward unraveling this etiology by highlighting
promising genetic candidates for detailed study.

Further experimentation must be undertaken before we can
completely unravel the causative etiology of genetic associations
with differential susceptibility. Indeed, initial deep sequencing
efforts indicated that the sox7 SNP identified by our GWAS is
highly correlated with nearby insertion/deletion variation. Thus,
as with any genome-wide scan, the markers identified as signifi-
cant highlight regions that, when considered in tandem with bio-
logical knowledge, are candidates for targeted follow-up. For
example, the second SNP passing our significance threshold fell
within the erf gene, for which there is evidence from other spe-
cies for a plausible connection to our Affected phenotype. An Erf
mutation in humans and mice is linked to craniosynostosis and
related eye, snout, and jaw deformities (Twigg et al. 2013).

In order to provide a clear test of whether our system could detect
GxE related to differential population susceptibility, we implemented
a straightforward approach of well-characterized genetic analysis
tools. By focusing on the reduction of measurement error in pheno-
types and having knowledge of an individual’s entire exposure his-
tory, we augmented our statistical detection power. However, this
does not discount the possibility that higher-order interactions
between genetic factors (i.e., epistasis) are involved (Motsinger et al.
2007). Future work will include methods aimed at assessing this
gene–gene interaction space (Zhao et al. 2015).

Conclusions
Our approach leverages whole-organism, HTS data to introduce a
data-driven strategy for identifying chemicals with putative GxE
effects. This search for empirical patterns of differential response
as an indicator of possible genetic explanations diverges from
studies that aim to further characterize the small subset of chemi-
cals with demonstrated GxE effects. Only with strong evidentiary
support for differential population susceptibility do we assay the
role of genetics in response to particular compounds. Moreover,
such an unbiased approach may identify candidate GxE chemi-
cals from a broader search space than traditionally studied, more
accurately representing the diversity of real-world chemical
space. In conclusion, by linking experimentation with bioinfor-
matical prediction, we can make more informed choices on new
experimental directions and avoid unnecessary expenditures of
time and money-chasing effects that are unlikely to reflect genetic
variation.
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